
GNU Rush – a restricted user

shell
version 2.2, 2 January 2022

Sergey Poznyakoff

Published by the Free Software Foundation, 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301 USA
Copyright c© 2008–2022 Sergey Poznyakoff
Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.3 or any later
version published by the Free Software Foundation; with no Invariant Sec-
tions, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license
is included in the section entitled “GNU Free Documentation License”.

i

Short Contents

1 Introduction . 1

2 Operation . 3

3 Quick Start . 5

4 Configuration File . 7

5 Default Configuration . 39

6 Usage Tips . 41

7 Test Mode . 47

8 Option Summary . 49

9 The rushwho utility. 51

10 The rushlast utility. 55

11 Accounting Database . 57

12 How to Report a Bug . 59

A Time and Date Formats . 61

B GNU Free Documentation License . 65

Concept Index . 75

iii

Table of Contents

1 Introduction . 1

2 Operation . 3

3 Quick Start . 5

4 Configuration File . 7
4.1 Lexical Structure of the Configuration File . 7
4.2 Syntax . 10
4.3 The global statement . 11

4.3.1 Expansion control . 11
4.3.2 Debugging . 11
4.3.3 The sleep-time statement . 12
4.3.4 Error Messages . 12
4.3.5 The regexp statement . 12
4.3.6 The include-security statement . 13
4.3.7 Accounting control statements . 14

4.4 Rule . 14
4.4.1 The Request . 15

4.4.1.1 Positional variables . 15
4.4.1.2 Request variables . 16
4.4.1.3 Environment variables . 16
4.4.1.4 User-defined variables . 16
4.4.1.5 Variable Expansion . 16

4.4.2 Matching Conditions . 18
4.4.2.1 Comparisons . 18
4.4.2.2 Membership operators . 19
4.4.2.3 File system tests . 19
4.4.2.4 Boolean expressions . 20

4.4.3 Modifying variables . 21
4.4.3.1 The set statement . 21
4.4.3.2 The insert statement . 23
4.4.3.3 The unset statement . 23
4.4.3.4 The remopt statement . 24
4.4.3.5 The delete statement . 24
4.4.3.6 The map statement . 24

4.4.4 Environment . 25
4.4.5 Transformations . 26
4.4.6 System Actions . 27
4.4.7 Fall-through . 29

iv GNU Rush – a restricted user shell

4.4.8 Accounting and Forked Mode . 30
4.4.9 Post-process Notification . 31
4.4.10 Exit rule . 32
4.4.11 Interactive Access . 33
4.4.12 Localization . 33

4.4.12.1 Localization Directives . 35
4.4.12.2 Writing Your Localization . 35

4.5 Include . 36

5 Default Configuration . 39

6 Usage Tips . 41
6.1 scp . 41
6.2 rsync . 42
6.3 sftp . 43
6.4 cvs . 44
6.5 svn . 44
6.6 git . 44
6.7 Notification . 45

7 Test Mode . 47
7.1 Dump Mode . 48

8 Option Summary . 49

9 The rushwho utility. 51
9.1 Rushwho Options . 51
9.2 Output Formats . 52

10 The rushlast utility. 55
10.1 Rushlast Options . 55

11 Accounting Database . 57
11.1 The wtmp file . 58
11.2 The utmp file . 58

12 How to Report a Bug . 59

Appendix A Time and Date Formats 61

v

Appendix B GNU Free
Documentation License . 65

Concept Index . 75

1

1 Introduction

GNU Rush is a Restricted User Shell, designed for sites that provide limited
remote access to their resources, such as svn or git repositories, scp, or the
like. Using a sophisticated configuration file, GNU Rush gives you complete
control over the command lines that users execute, as well as over the usage
of system resources, such as virtual memory, CPU time, etc.

3

2 Operation

GNU Rush is usually installed as a user shell. When a user connects to the
server (e.g. by using using SSH protocol), the shell binary, rush, is executed.
GNU Rush must be called with exactly two arguments: the -c command
line option and a command line to be executed on the host machine1. If
wrong arguments are supplied, the shell aborts.

The third argument to rush supplies a command line to be executed.
That command line, shell environment for its execution and the password
database entry for the user who executes rush are said to form a request.

After startup, rush reads a set of rules from its configuration file. Each
rule consists of matching conditions and actions. Conditions decide whether
the request matches the rule. They can include regular expression matching
against entire command line or particular words thereof, comparisons of user
name or group,, etc. If all conditions match the request, actions are executed.
Actions can instruct rush to:
• Modify the command line;
• Impose resource limits;
• Set umask;
• Change current working directory;
• Modify the execution environment;
• Run command in a special root directory (‘chroot’).

Finally, after all actions have been completed successfully, rush runs the
requested command. Notice, that by that time the resulting command line
is not necessarily the same as the original one supplied to rush with the -c
option.

A special kind of rules, called fall-through ones, is provided. Fall-through
rules differ from other rules in that they do not execute the command. After
all actions in a fall-through rule have been executed, GNU Rush continues to
search for another matching rule in its configuration and applies it, if found.
Fall-through rules are useful to set default values for subsequent rules.

1 Starting from version 1.6, it is possible to use GNU Rush for interactive shell sessions.
See Section 4.4.11 [Interactive], page 33, for more information about it.

5

3 Quick Start

To give you the feel of GNU Rush possibilities, let’s consider the following
configuration file rule:

rush 2.0

rule sftp
Matching condition
match $uid >= 100 && $command ~ "^.*/sftp-server"
Actions:
set [0] = "bin/sftp-server"
umask 002
chroot "~"
chdir "/"

The first clause defines the version of the syntax this configuration uses.
Each configuration must begin with this statement.

Next clause, rule, defines a new rule. Its argument serves as a rule tag
and is used for diagnostic messages and in accounting.

Lines beginning with ‘#’ are comments, they are intended for a human
reader and are ignored by rush.

The match statement, defines condition that must be met for this rule to
become active. In this example it requests that the UID of the requesting
user be greater than or equal to 100, and the command line begin with
‘/sftp-server’, optionally preceded by arbitrary directory components.

Subsequent clauses define actions associated with this rule.
The set clause contains instructions on how to modify the first argument

of the command line. Argument indices start at 0, so ‘[0]’ refers to the
command name. The expression in our example instructs GNU Rush to
replace it with ‘bin/sftp-server’.

The umask clause sets the file creation mask.
The chroot clause instructs GNU Rush to chroot to the user home di-

rectory before executing the command.
Finally, the chdir statement sets the directory to change to after in-

stalling the chroot.

7

4 Configuration File

The configuration file rush.rc is located in /usr/local/etc by default.1.
The configuration file is read and parsed right after start up. Any errors

occurred in parsing are reported using syslog facility ‘authpriv’ and prior-
ity ‘notice’. When run in ‘test’ mode, all diagnostics is displayed on the
standard error output. See Chapter 7 [Test Mode], page 47, for a detailed
description of ways to debug and test your configurations.

Before parsing, rush checks the ownership and permissions of the configu-
ration file for potential security breaches. The configuration file is considered
unsafe if any of the following conditions are met:
1. It is not owned by root.
2. It is group writable.
3. It is world writable.
4. It resides in a group writable directory.
5. It resides in a world writable directory.
6. It is a symbolic link to a file residing in a group or world writable

directory.

If the file is considered unsafe, rush rejects it and aborts execution.
Any of these tests can be disabled using the --security-check option

(see [–security-check], page 49).
As of version 2.2, rush supports two distinct configuration file formats.
The legacy configuration format is the one used in rush versions up to

1.9. It is still supported to facilitate transition of existing installations to
the new syntax. Its support will eventually be removed in future versions,
so the users are encouraged to switch to the new syntax as soon as possible.
The legacy syntax is described in detail in http://www.gnu.org.ua/
software/rush/legacy.

This manual describes new configuration file format.

4.1 Lexical Structure of the Configuration File
Configuration file consists of tokens separated by arbitrary amount of white-
space characters: horizontal spaces and tabs. Except when enclosed in dou-
ble quotes or preceded by a dollar sign, the ‘#’ character introduces an inline
comment: the character itself and any material that follows it up to the end
of the physical line is ignored. Comments are treated as newlines.

The following classes of tokens are recognized.

Newlines A newline character (ASCII 10) terminates a statement. If new-
line is immediately preceded by a backslash, both characters

1 The exact location of the configuration file is defined when configuring the package.
See the file INSTALL in the GNU Rush source directory for more information

http://www.gnu.org.ua/software/rush/legacy
http://www.gnu.org.ua/software/rush/legacy

8 GNU Rush – a restricted user shell

are removed and the following line is treated as a continuation
of the current line. This allows for splitting exceedingly long
statements over several physical lines.

Identifiers Identifiers begin with a letter and consist of letters, digits, under-
scores and dashes. They serve as keywords and variable names.

Decimal numbers
A sequence of decimal digits, optionally preceded by a minus or
plus sign.

Unquoted strings
An unquoted string is any contiguous sequence of any characters,
except newlines, whitespace and the following special characters:
‘\’, ‘"’, ‘!’, ‘=’, ‘<’, ‘>’, ‘(’, ‘)’, ‘{’, ‘}’, ‘[’, ‘]’, ‘$’, ‘%’, ‘&’, ‘|’,
‘~’, ‘#’.

Quoted strings
A quoted string is a sequence of characters enclosed in double-
quotes. Quoted strings are subject to backslash interpretation,
backreference interpretation and variable expansion.
During backslash interpretation, the escape sequences are rec-
ognized and replaced as per table below:

Sequence Replaced with
\a Audible bell character (ASCII 7)
\b Backspace character (ASCII 8)
\f Form-feed character (ASCII 12)
\n Newline character (ASCII 10)
\r Carriage return character (ASCII

13)
\t Horizontal tabulation character

(ASCII 9)
\v Vertical tabulation character

(ASCII 11)
\\ Single backslash character
\" Double-quote
\% Percent character
Table 4.1: Backslash escapes

A backslash immediately followed by newline character is re-
moved. A backslash followed by any other character except as
listed above is retained along with the character.
During backreference interpretation, references to parenthesized
groups in regular expression are replaced with the actual content
of the corresponding group in the most recently matched string.
A reference is ‘%{n}’ where n is a decimal number. If n is one

Chapter 4: Configuration File 9

digit, curly braces can be omitted: ‘%n’. If the ‘%’ character
results from previous backslash interpretation, no backreference
interpretation occurs.

Strings used in the left-hand side of a comparison expression
are subject to variable expansion. This is discussed in detail in
Section 4.4.1.5 [Variable expansion], page 16.

Variable references
Variable references consist of a ‘$’ sign, followed by the positional
argument number or variable name, optionally enclosed in curly
braces. Positional arguments greater than 9 must be enclosed in
curly braces. The variable name must follow the rules for valid
identifiers: it must begin with a letter and consist of letters,
digits and underscores. Variable name in curly braces can be
followed by ‘-’, ‘=’, ‘?’, or ‘+’, optionally preceded by ‘:’ as
summarized in the table below:

Reference Meaning
${var:-word} Use Default Values
${var:=word} Assign Default Values
${var:?word} Display Error if Null or Unset
${var:+word} Use Alternate Value
Table 4.2: Variable reference

Where word stands for any valid token as described in this sec-
tion. See Section 4.4.1.5 [Variable expansion], page 16, for a
detailed discussion of these forms and their meaning.

Comparison and boolean operators
These are:

10 GNU Rush – a restricted user shell

‘&&’ Boolean and
‘||’ Boolean or
‘!’ Boolean negation
‘==’ Equality (string or numeric)
‘!=’ Inequality (string or numeric)
‘<’ Less than
‘<=’ Less than or equal to
‘>’ Greater than
‘>=’ Greater than or equal to
‘~’ Regexp matching
‘!~’ Negated regexp matching
‘in’ Membership in set of strings
‘group’ Membership in UNIX group
‘=’ Assignment
‘=~’ Regular expression substitution
Table 4.3: Operators

See Section 4.4.2 [Matching Conditions], page 18, for a detailed
discussion.

4.2 Syntax
The ‘rush’ configuration consists of statements.

A statement consists of a keyword and optional arguments, separated
by any amount of whitespace. Each statement occupies one line in the
configuration file and is terminated by a newline character. Extremely long
statements may be split across several physical lines by ending each line
except the last with a backslash followed by a newline.

Statements may be separated by any amount of empty lines or comments.
The first statement in a configuration file indicates the syntax version. It

has the following form:
rush 2.0

This statement is mandatory. In its absence, the file will be treated as
a legacy configuration file2. To avoid confusion, a notice message to that
effect will be printed.

Statements that follow form logical groups. Each group begins with a
rule or global statement.

The global statement introduces global settings. It affects all statements
that follow it.

The rule statement introduces a single rush rule, that defines how to
process a particular command.

2 For the discussion of the legacy syntax, please refer to http://www.gnu.org.ua/

software/rush/legacy.

http://www.gnu.org.ua/software/rush/legacy
http://www.gnu.org.ua/software/rush/legacy

Chapter 4: Configuration File 11

These statements are described in the sections that follow.

4.3 The global statement
The global statement defines global settings. The syntax is:

global
stmt1
stmt2
...

where dots represent any number of statements. The following subsections
discuss the statements that can be used within a global block.

4.3.1 Expansion control

The following statement controls the behavior of rush when an undefined
variable is expanded (see Section 4.4.1.5 [Variable expansion], page 16).

[global]expand-undefined bool
If bool is ‘true’, expand undefined variables to empty value. If it is
‘false’ (the default), issue an error and abort.
The following values can be used as synonyms for ‘true’: ‘yes’, ‘on’, ‘t’,
‘1’.
The following values can be used as synonyms for ‘false’: ‘no’, ‘off’,
‘nil’, ‘0’.

See [handling of undefined variables], page 17, for a detailed discussion of
how rush processes undefined variables and for the recommended techniques
of handling them.

4.3.2 Debugging

The debug global statement sets the debugging level – an integer value that
controls the verbosity of rush:

[global]debug num
Set debugging level to num.

The greater num is, the more verbose is the logging. The debugging
information is reported via syslog at facility ‘authpriv’, priority ‘debug’.
As of version 2.2, the following debugging levels are supported:

1 A minimum debugging level, and the only one whose messages
are logged using the priority ‘notice’. At this level, rush only
logs requests and rules selected to handle them. For example:

rush[16821]: Serving request "/usr/libexec/sftp-server"
for sergiusz by rule sftp-savane

2 List all actions executed when serving requests.

12 GNU Rush – a restricted user shell

3 When parsing a legacy configuration file, verbosely describe
parsing process.

More debugging levels may be implemented in future.

4.3.3 The sleep-time statement

[global]sleep-time num
Set the time to sleep before exiting on error, in seconds. This statement
is intended as a measure against brute-force attacks. Default sleep time
is 5 seconds.

4.3.4 Error Messages

[global]message class text
Define a textual message which is returned to the remote party if an error
of the given class occurs.

Valid values for class are:

usage-error
This error is reported when rush has been invoked improperly.
The default text is:

You are not permitted to execute this command.

nologin-error
Define a textual message which is returned to the remote user if
there is no such user name in the password database.
Default is:

You do not have interactive login access to this machine.

config-error
Define a textual message which is returned to the remote party
if the rush configuration file contains errors.
Default is:

Local configuration error occurred.

system-error
Define a textual message which is returned to the remote party
if a system error occurs.
Default message is:

A system error occurred while attempting to execute command.

4.3.5 The regexp statement

The regexp statement configures the flavor of regular expressions for use by
subsequent match, set, and insert statements.

Chapter 4: Configuration File 13

[global]regexp flags ...
Configure the type of regular expressions.

Each flag is a word specifying some regular expression feature. It can
be preceded by ‘+’ to enable this feature (this is the default), or by ‘-’ to
disable it. Valid flags are:
‘extended’

Use POSIX Extended Regular Expression syntax when interpret-
ing regex. This is the default.

‘basic’ Use basic regular expressions. Equivalent to ‘-extended’.
‘icase’
‘ignore-case’

Do not differentiate case. Subsequent regex matches will be case
insensitive.

For example, the following statement enables POSIX extended, case in-
sensitive matching:

global
regex +extended +icase

4.3.6 The include-security statement

Additional configuration can be included to the main configuration file using
the include statement (see Section 4.5 [Include], page 36). Before inclusion,
a number of checks is performed on the file to ensure it is safe to rely on it.
These checks are configured using the following statement:

[global]include-security list
Configure the security checks for include files. This statement takes a
list of arguments, separated by white space. The following arguments are
recognized:
all Enable all checks.
owner The file is not owned by root.
iwgrp
groupwritablefile

The file is group writable.
iwoth
worldwritablefile

The file is world writable.
dir iwgrp
groupwritabledir

The file resides in a group writable directory.
dir iwoth
worldwritabledir

The file resides in a world writable directory.

14 GNU Rush – a restricted user shell

link The file is a symbolic link to a file residing in a group or world
writable directory.

Each of the above keywords may be prefixed by ‘no’, which reverses its
meaning. The special keyword ‘none’ disables all checks. Each keyword adds
or removes a particular test to the existing check list, which is initialized as
described in [security checks], page 7. Thus, the following statement results
in all checks, except for the file ownership:

global
include-security noowner

In the example below, the check list is first cleared by using the none
statement, and then a set of checks is added to it:

global
include-security none owner iwoth iwgrp

4.3.7 Accounting control statements

The following global statements control file mode and permissions of the
accounting database files. For a detailed description of this feature, See
Chapter 11 [Accounting Database], page 57.

[global]acct-umask mask
Set umask used when accessing accounting database files. Default value
is ‘022’.

[global]acct-dir-mode mode
Set mode bits for the accounting directory. The mode argument is the
mode in octal.

[global]acct-file-mode mode
Set mode bits for the wtmp and utmp files.

4.4 Rule
The rule statement configures a GNU rush rule. This is a block statement,
which means that all statements located between it and the next rule state-
ment (or end of file, whichever occurs first) modify the definition of that
rule.

The syntax of the rule statement is:

[Configuration]rule tag
The tag argument is optional. If it is given, it supplies a tag for the rule,

i.e. a (presumably unique) identifier, which is used to label this rule. Rush
uses this tag in its diagnostic messages. For rules without explicit tag, Rush
supplies a default tag, which is constructed by concatenating ‘#’ character
and the ordinal number of rule in the configuration file, in decimal notation.
Rule numbering starts from ‘1’.

Chapter 4: Configuration File 15

Each rule group can contain a number of statements that control what
kind of requests match that rule and what actions are taken when the rule
is matched. Arguments to this statements can refer to command line argu-
ments and other parts of the request.

4.4.1 The Request

User request consists of the user passwd entry, the command line supplied
to rush, and environment variables. The request is analyzed and can be
eventually modified by rules in rush configuration file. Rules access parts of
the request using variables.

There are four classes of variables. All of them share the same namespace
and are accessed using the same syntax.

4.4.1.1 Positional variables

Rush performs word splitting using the same rules as sh. Statements in the
configuration file refer to command line arguments (words) by their index,
using positional variables. A positional variable can have the following forms:

$n
${n}

where n is the variable index. The form with curly braces must be used if n
is negative (see below) or greater than 9.

Arguments are numbered from ‘0’. The name of the command is argu-
ment ‘$0’. Consider, for example, the following command line:

/bin/scp -t /upload

Word splitting phase results in three positional variables being defined:

Variable Value
$0 /bin/scp
$1 -t
$2 /upload

These values can also be referred to using negative indexes. They refer
to words in the reverse order, as illustrated in the following table (notice the
use of curly braces):

Variable Value
${-3} /bin/scp
${-2} -t
${-1} /upload

Notice also, that negative indexes are 1-based.
One final note about the ‘$0’ variable. Immediately after word splitting

it refers to both the executable program name and the 0th argument that
will be passed to that program (argv[0]). Most of the time the two values
coincide. However, the rule can modify either value, so that they become

16 GNU Rush – a restricted user shell

different. Whether modified or not, the actual name of the program to be
run is kept in the request variable ‘$program’ (see the following section).

4.4.1.2 Request variables

The following variables can be used to refer to various parts of the user
request:

Variable Expansion
$user User name
$group Name of the user’s principal group
$uid UID
$gid GID
$home User’s home directory
$gecos User’s GECOS field
$program Executable program name
$command Entire command line
$# Number of arguments in ‘$command’

4.4.1.3 Environment variables

Environment variables are accessed using the same syntax as the rest of the
variables. Rules can modify them using the setenv, clrenv and keepenv
statements (see Section 4.4.4 [Environment], page 25).

4.4.1.4 User-defined variables

In addition to the built-in variables, arbitrary variables can be defined and
used in the configuration file. These user-defined variables are defined using
the set statement (see Section 4.4.3.1 [set], page 21) and are normally used
to pass information between rules. They are invisible to whatever command
rush executes as the final result of processing.

4.4.1.5 Variable Expansion

Most statements in the configuration file undergo variable expansion prior to
their use. During variable expansion, references to variables in the string are
replaced with their actual values. A variable reference has two basic forms:

$v
${v}

where v is either the name of the variable (request, environment, or user-
defined), or the index of the positional variable. The notation in curly braces
serves several purposes. First, it is obligatory if v is an index of the positional
variable that is negative or greater than 9. Secondly, it should be used if
the variable reference is immediately followed by an alphanumeric symbol,
which will otherwise be considered part of it (as in ‘${home}dir’). Finally,
this form allows for specifying the action to take if the variable is undefined
or expands to an empty value.

Chapter 4: Configuration File 17

The following special forms are recognized:

${variable:-word}
Use Default Values. If variable is unset or null, the expansion
of word is substituted. Otherwise, the value of variable is sub-
stituted.

${variable:=word}
Assign Default Values. If variable is unset or null, the expansion
of word is assigned to variable. The value of variable is then
substituted.

${variable:?word}
Display Error if Null or Unset. If variable is null or unset, the
expansion of word (or a message to that effect if word is not
present) is output to the current logging channel. Otherwise,
the value of variable is substituted.

${variable:+word}
Use Alternate Value. If variable is null or unset, nothing is
substituted, otherwise the expansion of word is substituted.

These constructs test for a variable that is unset or null. Omitting the
colon results in a test only for a variable that is unset.

When expanding a variable reference, the variable name is first looked
among the request variables. If it is not found, it is looked up in the user-
defined variable list. If it is not there, the look up in the environment is
attempted.

If the variable name is not found in any of these lists, the default rush
behavior is to report the error of ‘config-error’ class (see Section 4.3.4
[Error Messages], page 12) and exit. To gracefully handle such cases, use the
default value construct, defined above. For example, the following statement
safely appends the string ‘/opt/man’ to the value of the MANPATH environment
variable:

setenv MANPATH = "${MANPATH:-""}${MANPATH:+:}/opt/man"

The ‘${MANPATH:-""}’ reference ensures no error is reported if the variable
is undefined. The ‘${MANPATH:+:}’ reference appends a semicolon to the
value, if the variable is defined. Finally the string ‘/opt/man’ is appended
to the resulting value.

Another way to gracefully handle undefined variables, is to use the
expand-undefined global setting. If you place the following statement at the
beginning of your configuration file, any undefined variable will be silently
expanded to empty string:

global
expand-undefined true

This statement affects variable expansion in statements that follow it in
the configuration file. So you can place it in some point after which this

18 GNU Rush – a restricted user shell

behavior is needed, and then disable it where it is no longer desired, by
using the following global statement:

global
expand-undefined false

4.4.2 Matching Conditions

[rule]match expr
The match statement defines conditions that decide whether the rule
matches the particular request. Its argument is a simple expression or
a boolean expression involving several simple expressions.

A simple expression is either a comparison or membership test.

4.4.2.1 Comparisons

A comparison expression is:
lhs op rhs

here, lhs (left-hand side) is a string (quoted or unquoted), or a variable
reference (see Section 4.1 [Lexical Structure], page 7), rhs (right-hand side)
is a string or number, and op is one of the following binary operators:

‘==’ Equality (string or numeric)
‘!=’ Inequality (string or numeric)
‘<’ Less than
‘<=’ Less than or equal to
‘>’ Greater than
‘>=’ Greater than or equal to
‘~’ Regexp matching
‘!~’ Negated regexp matching

Table 4.4: Comparison Operators
Prior to evaluating simple expression, its left-hand side undergoes variable

expansion and backreference interpretation. In contrast, the right-hand side
is always treated verbatim.

For example the following rule will match any request with 2 or more
arguments (recall, that the command name itself is counted as one of the
arguments):

rule
match $# >= 2

The ‘==’ and ‘!=’ can operate both on strings and on numbers. When
applied to strings the ‘==’ means byte-to-byte equality, e.g.

match $0 == "/bin/ls"

will match requests with ‘/bin/ls’ as the command name.
The ‘~’ and ‘!~’ operators implement regular expression matching.

Chapter 4: Configuration File 19

The expression ‘lhs ~ rx’ yields ‘true’ if lhs matches regular expression
rx. E.g.

match $command ~ "^scp (-v)?-t /incoming/(alpha|ftp)"

The ‘!~’ evaluates to ‘true’ if lhs does not match the regular expression
in the rhs.

If the regular expression contains parenthesized groups, subsequent com-
mands can refer to the strings that matched the groups using the backref-
erence notation ‘%n’, where n is 1-based index ordinal number of the group
in the regular expression (see [backreference], page 8). The reference ‘%0’
expands to the entire matched string. For example:

rule chdir
match $command "^cd (.+) && (.+)"
chdir %1
set command = %2
fall-through

It splits the compound command into the working directory and the
command itself. Then it remembers the name of the working directory (first
parenthesized group – ‘%1’) for changing to it later (see [chdir], page 28) and
resets the command line to the part of the string that follows the ‘&&’ token.
Finally, it passes control to another rules (see Section 4.4.7 [Fall-through],
page 29).

4.4.2.2 Membership operators

Membership operators check if their argument is a member of some set of
values. There are two such operators.

lhs in (args)

The in operator evaluates to ‘true’ if lhs is listed in args, which is a
whitespace-separated list of strings. For example:

match $0 in ("scp" "rsync")

The group operator evaluates to ‘true’ if the requesting user is a member
of at least one group listed in its right-hand side. It can have two forms:

group grp Evaluate to ‘true’ if the user is a member of the group grp. The
group can be given either by its name or GID.

group (list)
Evaluate to ‘true’ if the user is a member of one of the groups
in whitespace delimited list. Members of list are group names
or GIDs.

4.4.2.3 File system tests

File system tests check file types and ownership. They are similar to options
to test shell command:

-b file file exists and is block special

20 GNU Rush – a restricted user shell

-c file file exists and is character special

-d file file exists and is a directory

-e file file exists

-f file file exists and is a regular file

-g file file exists and is set-group-ID

-G file file exists and is owned by the primary group of the current user.

-h file
-L file file exists and is a symbolic link

-k file file exists and has its sticky bit set

-L file file exists and is a symbolic link (same as -h)

-O file file exists and is owned by the current user

-p file file exists and is a named pipe

-r file file exists and read permission is granted

-s file file exists and has a size greater than zero

-S file file exists and is a socket

-u file file exists and its set-user-ID bit is set

-w file file exists and write permission is granted

-x file file exists and execute (or search) permission is granted

4.4.2.4 Boolean expressions

Simple expressions can be combined into complex conditions using boolean
operators:

‘||’ Disjunction (or)
‘&&’ Conjunction (and)
‘!’ Negation

Table 4.5: Boolean Operators
Arguments to these operators can be either simple expressions or another

boolean expressions. The operators in the table above are ordered by their
precedence. As in most programming languages, parentheses can be used to
enforce the desired order of evaluation.

Both binary operators implement shortcut evaluation.
For example, the following rule will match if the command name contains

‘git-receive-pack’ or ‘git-upload-pack’ and either the UID is 100 or the
user is a member of the group ‘git’:

rule
match $0 ~ "git-(receive|upload)-pack" && \

($uid == 100 || group "git")

Chapter 4: Configuration File 21

Notice the use of parentheses to enforce proper evaluation order. The ‘&&’
operator has higher priority than ‘||’. Without parentheses the rule would
match if either the command name matched the regexp and the user ID
was 100, or if the user was a member of the ‘git’ group, no matter what
command was issued.

4.4.3 Modifying variables

Rules can change or unset variables. Two separate groups of statements
are provided to that effect. The set, unset, and map statements operate
on positional, request, and user-defined variables. The setenv, unsetenv,
clrenv, and keepenv statements modify the environment. These will be
discussed in a separate subsection (see Section 4.4.4 [Environment], page 25).

Modifications to positional and request variables deserve a special expla-
nation.

The only two request variables that can be modified (but not unset) are
$command and $program.

Positional variables and the $command request variable are mutually de-
pendent. If the $command is modified, the word splitting is applied to it and
resulting words are assigned to the positional variables. Similarly, any mod-
ifications to positional variables trigger rebuilding of the $command variable
from the modified arguments. Both operations are run immediately after
the change that triggered them. Notice, however, that any transformations,
including variable modifications, are executed after match statements have
been evaluated, so that match always operates on unchanged variables, no
matter where in the rule you place it,

If the rules result in accepting the request, then modified $command be-
comes the actual command that rush will execute.

Obviously, none of the request variables can be unset. You can however,
unset a positional variable (excepting ‘$0’). It is equivalent to removing the
corresponding argument from the command line.

4.4.3.1 The set statement

The set statement modifies the value of a positional, request, or user-defined
variable.

[rule]set name = value
[rule]set [n] = value

Sets the variable name to value. Prior to use, value undergoes backrefer-
ence interpretation (see [backreference], page 8) and variable expansion
(see Section 4.4.1.5 [Variable expansion], page 16).
The second form assigns to the positional variable ‘$n’. It is discussed in
more detail in Section 4.4.5 [Transformations], page 26.

22 GNU Rush – a restricted user shell

[rule]set name = value ~ s-expr
[rule]set [n] = value ~ s-expr

Applies the sed search-and-replace expression s-expr to value and assigns
the result to the variable name or argument n. Both value and s-expr
are subject to variable expansion and backreference interpretation.

[rule]set name =~ s-expr
[rule]set [n] =~ s-expr

Applies the sed-like search-and-replace expression s-expr to the current
value of the variable name and stores the resulting string as its new
value. Prior to use, s-expr undergoes backreference interpretation (see
[backreference], page 8) and variable expansion (see Section 4.4.1.5 [Vari-
able expansion], page 16). This is a shortcut for

set name = ${name:-""} ~ s-expr

Second form modifies the value of the positional variable ‘$n’. This state-
ment is a shortcut for

set [n] = ${n:-""} ~ s-expr

See Section 4.4.5 [Transformations], page 26, for a detailed discussion.

The transformation expression, s-expr, is sed-like replace expression of
the form:

s/regexp/replace/[flags]
where regexp is a regular expression, replace is a replacement for each part
of the input that matches regexp and flags are optional flags that control
the substitution. Both regexp and replace are described in Section “The ‘s’
Command” in GNU sed.

As in sed, you can give several replace expressions, separated by semi-
colons.

Supported flags are:

‘g’ Apply the replacement to all matches to the regexp, not just
the first.

‘i’ Use case-insensitive matching

‘x’ regexp is an extended regular expression (see Section “Extended
regular expressions” in GNU sed).

‘number’ Only replace the numberth match of the regexp.
Note: the POSIX standard does not specify what should happen
when you mix the ‘g’ and number modifiers. Rush follows the
GNU sed implementation in this regard, so the interaction is
defined to be: ignore matches before the numberth, and then
match and replace all matches from the numberth on.

Normally, the s-expr is a quoted string, and as such it is subject to back-
slash interpretation. It is therefore important to properly escape backslashes,
especially in replace part. Consider this example:

Chapter 4: Configuration File 23

set bindir = $program ~ "s/(.*)\\//\\1/"

The intention is to extract the directory part of the executable program
name and store it in the variable ‘bindir’. Notice, that each backslash is
escaped, so that the actual string that is compiled into a regular expression
is

s/(.*)\//\1/

4.4.3.2 The insert statement

The insert statement inserts new positional argument at a given position.
Its syntax is similar to set:

[rule]insert [n] = value
[rule]insert [n] = value ~ s-expr

Shift arguments starting from n one position to the right (so that n be-
comes n+1 etc.) and insert value at argv[n].
In the second form, the value to be inserted is computed by applying
sed-expression s-expr to value.
Both value and s-expr are subject to variable expansion and backreference
interpretation.

Example using this statement to insert the --root=/tmp argument at
position 1:

insert [1] = "--root=/tmp"

Note that when inserting multiple arguments (e.g. an option with a value),
you have two possibilities. First, you can insert each argument at its cor-
responding position. For example, to insert two arguments ‘--root’ and
‘/tmp’ starting at position 1, one can use:

insert [1] = "--root"
insert [2] = "/tmp"

Otherwise, you can revert the arguments and insert them at the same posi-
tion, as shown in the example below:

insert [1] = "/tmp"
insert [1] = "--root"

4.4.3.3 The unset statement

[rule]unset name
Unset the variable name.

[rule]unset n
Unset the positional argument n (an integer number greater than 0),
shifting the remaining arguments one position left. The effect is the same
as from delete (see Section 4.4.3.5 [delete], page 24).

24 GNU Rush – a restricted user shell

4.4.3.4 The remopt statement

The remopt statement removes from the command line all occurrences of
the supplied option.

[rule]remopt sopt
[rule]remopt sopt lopt

Remove from the command line all occurrences of the short option de-
scribed by sopt. The sopt argument is the short option letter, optionally
followed by a colon if that option takes a mandatory argument, or by two
colons if it takes an optional argument.
Optional lopt supplies a long option equivalent to sopt. If no short option
equivalent exists, use ‘_’ as sopt, eventually followed by ‘:’ or ‘::’.

For example, to remove all occurrences of the -r (--root) option that
takes a mandatory argument, use:

remopt r: root

4.4.3.5 The delete statement

Another statement modifying the command line is delete:

[rule]delete n
Delete nth argument.

[rule]delete i j
Delete positional parameters between ‘$i’ and ‘$j’, inclusive.

Neither form can be used to delete the program name (‘$0’).
For example, the following statement deletes all arguments from the com-

mand line, except for the program name:
delete 1 -1

To delete a single argument, unset can also be used. The following
statements have the same effect:

delete 2
unset 2

4.4.3.6 The map statement

[rule]map name file delim key kn vn
[rule]map [n] file delim key kn vn default

The ‘map’ statement uses file lookup to find a new value for the variable
name (or, in its second form, for the positional variable ‘$n’).
Arguments are:

file Name of the map file. It must begin with ‘/’ or ‘~/’. Before
using, the file permissions and ownership are checked using
the procedure described in [security checks], page 7.

Chapter 4: Configuration File 25

delim A string containing allowed field delimiters.

key The value of the lookup key. Before using, it undergoes back-
slash interpretation and variable expansion.

kn Number of the key field in file. Fields are numbered starting
from 1.

vn Number of the value field.

default If supplied, this value is used as a replacement value, when
the key was not found in file.

The map file consists of records, separated by newline characters (in other
words, a record occupies one line). Each record consists of fields, separated
by delimiters listed in delim argument. If delim contains a space character,
then fields may be delimited by any amount of whitespace characters (spaces
and/or tabulations). Otherwise, exactly one delimiter delimits fields.

Fields are numbered starting from 1.
The map action works as follows:

1. Variable expansion is performed on the key argument (see
Section 4.4.1.5 [Variable expansion], page 16) and the resulting value is
used as lookup key.

2. The file is scanned for a record whose knth field matches the lookup
key.

3. If such a record is found, the value of its vnth field is assigned to the
variable.

4. Otherwise, if default is supplied, it becomes the new value of the vari-
able.

5. Otherwise, the variable remains unchanged.

For example, suppose that the file /etc/passwd.rush has the same syn-
tax as the system passwd file (see Section “passwd” in passwd(5) man page).
Then, the following statement will replace ‘$0’ with the value of ‘shell’ field,
using the current user name as a key:

map [0] /etc/passwd.rush : ${user} 1 7

See also Section 4.4.11 [Interactive], page 33, for another example of using
this statement.

4.4.4 Environment

The following actions modify the environment in which the program will be
executed.

[rule]clrenv
Clear the environment.

26 GNU Rush – a restricted user shell

[rule]keepenv list
Retain the names in list in the environment. This statement should be
used in conjunction with clrenv.
Argument is a whitespace delimited list of variables to retain. Each ele-
ment in the list can be either a variable name, or a shell-style globbing
pattern, in which case all variables matching that pattern will be retained,
or a variable name followed by an equals sign and a value, in which case
it will be retained only if its actual value equals the supplied one. For
example, to retain only variables with names beginning with ‘LC_’:

keepenv "LC_*"

[rule]setenv name = value
Set the environment variable name. The value argument is subject to
variable expansion (see Section 4.4.1.5 [Variable expansion], page 16) and
backreference interpretation (see [backreference], page 8).
For example, to modify the PATH value:

setenv PATH = "$PATH:/opt/bin"

[rule]unsetenv list
Unset environment variables listed as arguments.
Argument is a whitespace delimited list of variables to retain. Each ele-
ment in the list can be either a variable name, or a shell-style globbing
pattern, in which case all variables matching that pattern will be unset,
or a variable name followed by an equals sign and a value, in which case
it will be unset only if its actual value equals the supplied one.

[rule]evalenv string
Performs backslash interpretation, backreference interpretation and vari-
able expansion on string and discards the result. This statement is similar
to the shell’s colon statement. For example, the following statement will
define the DEPTH variable and initialize it to 10, unless it is already de-
fined:

evalenv ${DEPTH:=10}

4.4.5 Transformations

Transformations are special actions that modify entire command line or par-
ticular arguments from it (positional variables).

Statements that modify variable have been described in the previous sec-
tion: these are set, insert, unset, remopt, delete and map statements.
When set or map is applied to the ‘command’ variable, it modifies entire
command line. When these statements are applied to an index (‘[n]’), they
modify the corresponding positional variable (argument). This subsection
discusses the implications of modifying these variable and illustrates them
with some examples.

Positional variables and the $command request variable are mutually de-
pendent. If the $command is modified, the word splitting is applied to it

Chapter 4: Configuration File 27

and resulting words are assigned to the positional variables. Similarly, any
modifications to positional variables trigger rebuilding of the $command vari-
able from the modified arguments. See Section 4.4.3 [Modifying variables],
page 21, for more detail on it.

Let’s consider several examples.
1. Echo the command line

rule
set command = "/bin/echo $command"

2. Remove all occurrences of -r option and its arguments from the com-
mand line, and then adds its own -r option and replaces ‘svnserve’
with the full program file name.
There are at least three different ways to do so.
a. The recommended approach is to use the remopt and insert state-

ments, as shown below:
rule svn
match $command ~ "^svnserve -t"
set program = "/usr/bin/svnserve"
remopt r:
insert [1] = "-r"
insert [2] = "/svnroot"

b. The same can be achieved using regular expressions. This was the
default in versions of rush prior to 2.0:

rule svn
match $command ~ "^svnserve -t"
set command =~ "s/-r *[^]*//"
set command =~ \

"s|^svnserve |/usr/bin/svnserve -r /svnroot |"

Notice the use of ‘|’ as a delimiter in s-command, in order to avoid
escaping each ‘/’ in the pathname. Without it, the expression in
the second set command will be

"s/^svnserve /\\/usr\\/bin\\/svnserve -r \\/svnroot /"

c. The same rule, rewritten using the single set statement:
rule svn
match $command ~ "^svnserve -t"
set command =~ "s|-r *[^]*||;\

s|^svnserve |/usr/bin/svnserve -r /svnroot |"

3. Override the executable program name.
rule cvs
match $command ~ "^cvs server"
set [0] = /usr/bin/cvs

4.4.6 System Actions

System actions provide an interface to the operating system.

28 GNU Rush – a restricted user shell

[rule]umask mask
Set the umask. The mask must be an octal value not greater than ‘0777’.
The default umask is ‘022’.

[rule]newgrp group-id
[rule]newgroup group-id

Change the current group ID to group-id, which is either a numeric value
or a name of an existing group.

[rule]chroot dir
Change the root directory to that specified in dir. This directory will
be used for file names beginning with ‘/’. The argument is subject to
tilde, variable, and backreference expansions. During tilde expansion, a
tilde (‘~’) at the start of string is replaced with the absolute pathname
of the user’s home directory. The two other expansions are described in
Section 4.4.1.5 [Variable expansion], page 16, and [backreference], page 8.

The directory dir must be properly set up to execute the commands. For
example, the following rule defines execution of sftp-server in an environ-
ment chrooted to the user’s home directory:

rule sftp
match $program ~ "^.*/sftp-server"
set [0] = "bin/sftp-server"
chroot "~"

For this to work, each user’s home must contain the directory bin with a
copy of sftp-server in it, as well as all directories and files that are needed
for executing it, in particular lib.

[rule]chdir dir
Change to the directory dir. The argument is subject to tilde, variable
(see Section 4.4.1.5 [Variable expansion], page 16), and backreference ex-
pansions (see [backreference], page 8). If both chdir and chroot are
specified, then chroot is applied first.

[rule]limits res
Impose limits on system resources, as defined by res. The argument con-
sists of commands, optionally separated by any amount of whitespace. A
command is a single command letter followed by a number, that specifies
the limit. The command letters are case-insensitive and coincide with
those used by the shell ulimit utility:

Command The limit it sets
A max address space (KB)
C max core file size (KB)
D max data size (KB)
F maximum file size (KB)
M max locked-in-memory address space (KB)

Chapter 4: Configuration File 29

N max number of open files
R max resident set size (KB)
S max stack size (KB)
T max CPU time (MIN)
U max number of processes
L max number of logins for this user (see

below)
P process priority -20..20 (negative = high

priority)
For example:

limits T10 R20 U16 P20
If some limit cannot be set, execution of the rule aborts. In particular, the
‘L’ limit can be regarded as a condition, rather than an action. Setting
limit Ln succeeds only if no more than n rush instances are simultane-
ously running for the same user. This can be used to limit the number of
simultaneously open sessions.
The use of ‘L’ resource automatically enables forked mode. See
Section 4.4.8 [Accounting and Forked Mode], page 30, for more
information about it.

4.4.7 Fall-through

The fall-through statement is a special action that does not execute the re-
quested command. When a matching fall-through rule is encountered, rush
evaluates it and continues scanning its configuration for the next match-
ing rule. Any modifications to the request found in the fall-through rule
take effect immediately, which means that subsequent rules will see modi-
fied command line and environment. Execution of any other actions found
in the fall-through rule is delayed until a usual rule is found.

A fall-through rule is declared using the following statement:

[rule]fall-through
[rule]fallthrough

Declare a fall-through rule.

Usually this statement is placed as the last statement in a rule, e.g.:
rule default
umask 002
clrenv
keepenv HOME USERNAME PATH
fall-through

Fall-through rules provide a way to set default values for subsequent
rules. For example, any rules that follow the ‘default’ rule shown above,
will inherit the umask and environment set there.

One can also use fall-through rules to “normalize” command lines. For
example, consider this rule:

30 GNU Rush – a restricted user shell

rule default
set [0] =~ "s|.*/||"
fall-through

It will remove all path components from the first command line argument.
As a result, all subsequent rules may expect a bare binary name as the first
argument.

Yet another common use for such rules is to enable accounting (see the
next subsection), or set resource limits for the rest of rules:

rule default
limit l1
fall-through

4.4.8 Accounting and Forked Mode

GNU Rush is able to operate in two modes, which we call default and forked.
When operating in the default mode, the process image of rush itself is over-
written by the command being executed. Thus, when it comes to launching
the requested command, the running instance of rush ceases to exist.

There is also another operation mode, which we call forked mode. When
running in this mode, rush executes the requested command in a subpro-
cess, and remains in memory supervising its execution. Once the command
terminates, rush exits.

One advantage of the forked mode is that it allows you to keep account-
ing, i.e. to note who is doing what and to keep a history of invocations. The
accounting, in turn, can be used to limit simultaneous executions of com-
mands (logins, in GNU Rush terminology), as requested by ‘L’ command to
limit statement (see [L limit], page 29).

The forked mode is enabled on a per-rule basis, for rules that contain
either ‘L’ command in the limit statement, or ‘acct on’ command:

[rule]acct bool
Turn accounting mode on or off, depending on bool. The argument can be
one of the following: ‘yes’, ‘on’, ‘t’, ‘true’, or ‘1’, to enable accounting,
and ‘no’, ‘off’, ‘nil’, ‘false’, ‘0’, to disable it.
Notice, that there is no need in explicit acct on command, if you use
limit L.

The notion ‘rule contains’, used above, means that either the rule in
question contains that statement, or inherits it from one of the fall-through
rules (see Section 4.4.7 [Fall-through], page 29) that were matched before
it. In fact, in most cases the accounting should affect all rules, therefore we
suggest to enable it in a fall-through rule at the beginning of the configuration
file, e.g.:

rule default
acct on
fall-through

Chapter 4: Configuration File 31

If the need be, you can disable it for some of the subsequent rules by
placing acct off in it. Notice, that this will disable accounting only, the
forked mode will remain in action. To disable it as well and enforce default
mode for a given rule, use the following statement:

[rule]fork bool
Enable or disable forked mode. This statement is mainly designed as a
way of disabling the forked mode for a given rule.

Once accounting is enabled, you can use the rushwho command to see the
list of users presently running some commands (see Chapter 9 [Rushwho],
page 51) and view the history of last accesses using rushlast command (see
Chapter 10 [Rushlast], page 55).

4.4.9 Post-process Notification

Rush can be configured to send a notification over INET or UNIX sockets,
after completing user request. It is done using the post-socket statement:

[rule]post-socket url
Notify URL about completing the user request. This statement implies
forked mode (see Section 4.4.8 [Accounting and Forked Mode], page 30).
Allowed formats for url are:
inet://hostname[:port]

Connect to remote host hostname using TCP/IP. Hostname
is the host name or IP address of the remote machine. Op-
tional port specifies the port number to connect to. It can
be either a decimal port number or a service name from
/etc/services. If port is absent, ‘tcpmux’ (port 1) is as-
sumed.

unix://filename
local://filename

Connect to a UNIX socket filename.
For example:

rule default
post-socket "inet://localhost"

The GNU Rush notification protocol is based on TCPMUX (RFC 1078
(http://www.rfc-editor.org/rfc/rfc1078.txt)).

After establishing connection, rush sends the rule tag followed by a CRLF
pair. The rule tag acts as a service name. The remote party replies with a
single character indicating positive (‘+’) or negative (‘-’) acknowledgment,
optionally followed by a message of explanation, and terminated with a
CRLF.

If positive acknowledgment is received, rush sends a single line, consisting
of the user name and the executed command line, separated by a single space
character. The line is terminated with a CRLF.

http://www.rfc-editor.org/rfc/rfc1078.txt
http://www.rfc-editor.org/rfc/rfc1078.txt

32 GNU Rush – a restricted user shell

After sending this line, rush closes the connection.
The post-process notification feature can be used to schedule execution

of some actions after certain rules.
See Section 6.7 [notification example], page 45, for an example of how to

use this feature.

4.4.10 Exit rule

The exit rule does not execute any commands. Instead, it writes the supplied
error message to the specified file descriptor and exits immediately. The exit
rule is defined using the following statement:

[rule]exit fd message
[rule]exit message

Write textual message message to a file descriptor, given by the optional
argument fd. If fd is absent, ‘2’ (standard error) is used.

The message argument can be either a quoted string, or an identifier.
If it is a quoted string, it is subject to backreference interpretation and

variable expansion prior to being used.
For example (note the use of line continuation character):
exit "\

\r\nYou are not allowed to execute that command.\r\n\
\r\nIf you think this is wrong, ask <foo@bar.com> for assistance.\r\n"

If message is an identifier, it must be the name of a predefined error
message (see Section 4.3.4 [Error Messages], page 12). The corresponding
message text will be printed. For example:

exit nologin-message

If the identifier does not match any predefined error message name, an
error of type ‘config-error’ is signaled and rush exits.

Exit actions are useful for writing trap rules, i.e. the rules that are
intended to trap incorrect or prohibited command lines and to return cus-
tomized reply messages in such cases. Consider the following rule:

rule git
match $program ~ "^git-.+" && $1 ~ "^/sources/[^]+\.git$"
set command =~ "s|.*|/usr/bin/git-shell -c \"&\"|"

It allows the client to use only those Git repositories that are located
under /sources directory3. If a user tries to access a repository outside
this root, he will be returned a default error message, saying ‘You are not
permitted to execute this command’ (see Section 4.3.4 [Error Messages],
page 12). You can, however, provide a more convenient message in this case.
To do so, place the following after the ‘git’ rule:

3 See Section 6.6 [git], page 44, for a better way to handle Git accesses.

Chapter 4: Configuration File 33

rule git-trap
match $command ~ "^git-.+"
exit "fatal: Use of this repository is prohibited."

This rule will trap all git invocations that do not match the ‘git’ rule.

4.4.11 Interactive Access

Sometimes it may be necessary to allow some group of users limited access to
interactive shells. GNU Rush contains provisions for such usage. When rush
is invoked without -c it assumes interactive usage. In this case only rules
explicitly marked as interactive are considered, the rest of rules is ignored.

[rule]interactive bool
If bool is ‘true’, this statement marks the rule it appears in as interac-
tive. This rule will match only if rush is invoked without command line
arguments.

Unless command line transformations are applied, interactive rule finishes
by executing /bin/sh. The first word in the command line (argv[0]) is
normally set to the base name of the command being executed prefixed by
a dash sign.
Consider the following example:

rule login
interactive true
group rshell
map program /etc/rush.shell : ${user} 1 2
set [0] = ${program} ~ "s|^.*/||;s,^,-r,"

rule nologin
interactive true
exit You don’t have interactive access to this machine.

The ‘login’ rule will match interactive user requests if the user is a
member of the group ‘rshell’. It uses /etc/rush.shell to select a shell to
use for that user (see Section 4.4.3.6 [map], page 24). This map file consists
of two fields, separated by a colon. If the shell is found, its base name,
prefixed with ‘-r’, will be used as ‘argv[0]’ (this indicates a restricted login
shell). Otherwise, the trap rule ‘nologin’ will be matched, which will output
the given diagnostics message and terminate rush.

To test interactive access, use the -i option:
rush --test -i

4.4.12 Localization

GNU Rush is internationalized, which means that it is able to produce log
and diagnostic messages in any language, if a corresponding translation file
is provided. This file is called a localization or domain file. To find an
appropriate localization file, rush uses the following parameters:

34 GNU Rush – a restricted user shell

locale Locale name is a string that describes the language, territory
and optionally, the character set to use. It consists of the lan-
guage (ISO 639) and country (ISO 3166) codes, separated by an
underscore character, e.g. ‘en_US’ or ‘pl_PL’. If a character set
is specified, its name follows the country code and is separated
from it by a ‘@’ character.
There are two special locale names: ‘C’ or ‘POSIX’ mean to use
the default POSIX locale, and ‘""’ (an empty string), means to
use the value of the environment variable LC_ALL as the locale
name.

locale dir Directory where localization files are located. If not specified, a
predefined set of directories is searched for the matching file.

domain Text domain defines the base name of the localization file.

Given these parameters, the name of the full pathname of the localization
file is defined as:

locale_dir/locale/LC_MESSAGES/domain.mo

GNU Rush produces three kinds of messages:

diagnostics
These are diagnostics messages that GNU Rush produces to its
log output (syslog, unless in test mode).

error messages
Messages sent to the remote party when rush is not able to
execute the request (see Section 4.3.4 [Error Messages], page 12).

exit messages
These are messages sent to the remote party by exit rules (see
Section 4.4.10 [Exit], page 32).

These messages use different domain names (and may use different locale
directories). The diagnostics and error messages use textual domain ‘rush’.
The corresponding locale directory is defined at compile time and defaults to
prefix/share/locale, where prefix stands for the installation prefix, which
is /usr/local, by default.

GNU Rush is shipped with several localization files, which are
installed by default. As of version 2.2, these files cover the follow-
ing languages: Chinese, Danish, Dutch, Finnish, French, Galician,
German, Polish, Portuguese, Serbian, Spanish, Swedish, Ukrainian,
and Vietnamese. If the localization you need is not in this list, visit
http://translationproject.org/domain/rush.html. If it is not there
either, consider writing it (see Section “Translators” in GNU gettext
utilities, for a detailed instructions on how to do that).

Exit messages use custom domain files. It is the responsibility of the
system administrator to provide and install such files.

http://translationproject.org/domain/rush.html

Chapter 4: Configuration File 35

4.4.12.1 Localization Directives

The following configuration directives control localization. They are avail-
able for use in rule statements:

[rule]locale name
Sets the locale name. To specify empty locale, use ‘""’ as name (re-
call that empty locale name means to use the value of the environment
variable LC_ALL as locale name).

[rule]locale-dir name
Sets the name of the locale directory.

[rule]text-domain name
Sets the textual domain name.

The following configuration fragment illustrates their use:
rule l10n
locale "pl_PL"
text-domain "rush-config"
fall-through

Different users may have different localization preferences. See [per-user
l10n], page 36, for a description of how to implement this.

4.4.12.2 Writing Your Localization

You need to write a localization file for your configuration script if it imple-
ments exit rules (see Section 4.4.10 [Exit], page 32) and changes user locale
(see Section 4.4.12.1 [Localization Directives], page 35).

Preparing a localization consists of three stages: extracting exit messages
and forming a PO file, editing this file, compiling and installing it. The
discussion below describes these stages in detail.
1. Creating a ‘po’ file.

A PO (Portable Object) file is a plain text file, containing original mes-
sages and their translations for a particular language. See Section “PO
Files” in GNU gettext utilities, for a description of its format.
The script rush-po extracts translatable messages from the configura-
tion file and produces a valid PO file. It takes the name of the rush
configuration file as its argument and produces the PO file on the stan-
dard output, or in the file given with the -o (--output) option. E.g.,
to create a PO file from your configuration file, run:

rush-po -o myconf.po /usr/local/etc/rush.rc

2. Editing the PO file
Open the created PO file with your favorite editor and supply message
translations after msgstr keywords. Although you can use any editor
capable of handling plain text files, we recommend to use GNU Emacs,

36 GNU Rush – a restricted user shell

which provides a special po-mode. See Section “Basics” in GNU gettext
utilities, for guidelines on editing PO files and using the po-mode.

3. Compiling the PO file
When ready, the PO file needs be compiled into a MO (Message Object)
file, which is directly readable by rush. This is done using msgfmt utility
from GNU gettext:

msgfmt -o myconf.mo myconf.po

See Section “msgfmt Invocation” in GNU gettext utilities, for a detailed
description of the msgfmt utility.
After creating the MO file, copy it into appropriate directory. It is
important that the installed MO file uses the naming scheme described
in [localization file naming], page 34.

4.5 Include
The include statement forces inclusion of the named file in that file location:

[rule]include file
Include file file.

The statement is evaluated when parsing the configuration file, which
means that file undergoes only tilde expansion: the two characters ‘~/’ ap-
pearing at the beginning of file are replaced with the full path name of the
current user’s home directory.

If file is a directory, that directory is searched for a file whose name
coincides with the current user name. If such a file is found, it is included.

In any case, if the file named by file (after tilde expansion) does not exist,
no error is reported, and parsing of the configuration file continues.

Before including the file rush checks if it is secure, using the same rules
as for the main configuration file (see [security checks], page 7). The ex-
act list of checks can be tuned using the include-security statement (see
Section 4.3.6 [include-security], page 13).

The include statement can be used only within a rule. The included file
may not contain rule and global statements.

This statement provides a convenient way for user-dependent rush con-
figuration. For example, the following fall-through rule (see Section 4.4.7
[Fall-through], page 29) allows the administrator to keep each user personal
configuration in a file named .rush, located in the user’s home directory:

rule user
include "~/.rush"
fall-through

Of course, it is supposed that such a per-user file, if it exists, is writable
only for super-user.

Chapter 4: Configuration File 37

The use of include files may be especially useful for per-user localization
(see Section 4.4.12 [Localization], page 33). It suffices to provide a fall-
through rule, similar to the one above, and to place a locale directive in
~/.rush files, according to the user preferences.

39

5 Default Configuration

You can compile rush with the default configuration built in the binary.
Such a binary can then be run without configuration file. However, if a con-
figuration file is present, it will be used instead of the built-in configuration.

To compile rush with the built-in configuration, first compile the pack-
age as usual. Then, prepare a configuration file, and test it using rush
--lint. If the test shows no errors, reconfigure the package, using the
--with-default-config option:

./configure --with-default-config=file
where file is the name of your configuration file. Then, recompile and install
the package.

You can inspect the built-in configuration using the --show-default
option:

rush --show-default

41

6 Usage Tips

In this chapter we will explain how to write GNU Rush configuration rules
for several popular remote copy and version control system utilities. For this
purpose, we assume the following setup:
• Users are allowed to use scp and rsync to upload files to the /incoming

directory and to copy files to and from their ~/public_html directory.
The actual location of the /incoming directory is /home/ftp, but that
must be transparent to users, i.e. they use scp file host:/incoming
(not host:/home/ftp/incoming) to upload files.

• Additionally, users may use sftp to manage their ~/public_html di-
rectory. In this case, to prevent users from accessing other directories,
sftp-server is executed in a chrooted environment.

• The server runs three version control system repositories, whose corre-
sponding root directories are:

VCS Repository Root
cvs /cvsroot
svn /svnroot
git /gitroot

6.1 scp
The scp utility is executed on the server side with option -t, when copying
files to server, and with -f when copying from it. Thus, the basic templates
for scp rules are:

Copying to server:
rule scp-to
match $command ~ "^scp -t"
...

Copying from server:
rule scp-from
match $command ~ "^scp -f"
...

You may also wish to allow for -v (‘verbose’) command line option. In
this case, the ‘scp-to’ rule will become:

rule scp-to
match $command ~ "^scp (-v)?-t"
...

Now, we want users to be able to upload files to /home/ftp/incoming di-
rectory. Moreover, the /home/ftp directory prefix must be invisible to them.
We should also make sure that the user cannot get outside the incoming di-
rectory by using ../ components in his upload path. So, our first rule for
scp uploads will be:

42 GNU Rush – a restricted user shell

rule scp-to-incoming
match $command ~ "^scp (-v)?-t /incoming/" && \

${-1} !~ "\\.\\./"
set command "/bin/scp"
set [-1] =~ "s|^|/home/ftp/|"

The match statement ensures that no relative components are used.
The two set statements ensure that the right scp binary is used and that
/home/ftp prefix is prepended to the upload path.

Other than uploading to /incoming, users must be able to use scp to
manage public_html directories located in their homes. They should use
relative paths for that, i.e., the command:

$ scp file.html server:

will copy file file.html to ~/public_html/file.html on the server. The
corresponding rule is:

rule scp-home
match $command ~ "^scp (-v)?-[tf] [^/].*" && \

${-1} !~ "\\.\\./"
set [0] = "/bin/scp"
set [-1] =~ "s|^|public_html/|"
chdir "~"

Finally, we provide two trap rules for diagnostic purposes:

rule scp-to-trap
match $command ~ "^scp (-v)?-t"
exit "Error: Uploads to this directory prohibited"

rule scp-from
match $command ~ "^scp (-v)?-f"
exit Error: Downloads from this directory prohibited

6.2 rsync
On the server side, rsync is executed with the --server command line
option. In addition, when copying files from the server, the --sender option
is used. This makes it possible to discern between incoming and outgoing
requests.

In our setup, rsync is used the same way as scp, so the two rules will be:

Chapter 6: Usage Tips 43

rule rsync-incoming
match $command ~ "^rsync --server" && \

$command !~ --sender && \
${-1} ~ "/incoming/" && ${-1} !~ "\\.\\./"

set [0] =~ "s|^|/usr/bin/|"
set [-1] =~ "s|^|/home/ftp/|"

rule rsync-home
match $command ~ "^rsync" && \

${-1} !~ "^[^/]" && \
${-1} !~ "\\.\\./"

set [0] = "s|^|/usr/bin/|"
set [-1] =~ "s|^|public_html/|"
chdir "~"

The trap rules for rsync are trivial:

rule rsync-to-trap
match $command ~ "^rsync.*--sender"
exit "Error: Downloads from this directory prohibited"

rule rsync-from-trap
match $command ~ "^rsync"
exit "Error: Uploads to this directory prohibited"

6.3 sftp
Executing sftp on the client machine invokes sftp-server, without argu-
ments, on the server.

We want to allow our users to use sftp to manage their public_html di-
rectories. The sftp-server will be executed with the user’s home directory
as root, in a chrooted environment. For this to work, each user’s home must
contain a copy of sftp-server (which we’ll place in ~/bin subdirectory)
and all files it needs for normal execution: /etc/group and /etc/passwd
with one entry (for the user and his group), and, unless the binary is linked
statically, all the shared libraries it is linked with, in the subdirectory ~/lib.

Given these prerequisites, the following rule will ensure proper sftp in-
teraction:

rule sftp-incoming
match $command ~ "^.*/sftp-server"
set [0] = "/bin/sftp-server"
chroot "~"
chdir "public_html"

Notice the last action. Due to it, users don’t have to type cd public_html
at the beginning of their sftp sessions.

44 GNU Rush – a restricted user shell

6.4 cvs
Using cvs over ssh invokes cvs server on the server machine. In the sim-
plest case, the following rule will do to give users access to CVS repositories:

rule cvs
match $command ~ "^cvs server"
set command ~ "s|^cvs|/usr/bin/cvs -f"

However, cvs as of version 1.12.13 does not allow to limit root directo-
ries that users are allowed to access. It does have --allow-root option,
but unfortunately this option is ignored when invoked as cvs server. To
restrict possible roots, we have to run cvs in a chrooted environment. Let’s
suppose we created an environment for cvs in directory /var/cvs, with the
cvs binary located in /var/cvs/bin and repository root directory being
/var/cvs/cvsroot. Then, we can use the following rule:

rule cvs
match $command ~ "^cvs server"
set [0] = "/bin/cvs"
chroot "/var/cvs"

6.5 svn
Remote access to SVN repositories is done via svnserve binary. It is exe-
cuted on server with -t option. The -r option can be used to restrict access
to a subset of root directories. So, we can use the following rule:

rule svn
match $command ~ "^svnserve -t"
set command =~ "s|-r *[^]*||"
set command =~ \

"s|^svnserve |/usr/bin/svnserve -r /svnroot|"

The first set command action removes any -r options the user might have
specified and enforces a single root directory. A more restrictive action can
be used to improve security:

set command =~ "s|.*|/usr/bin/svnserve -r /svnroot|"

6.6 git
Remote access to Git repositories over ssh causes execution of git-receive-
pack and git-upload-pack on the server. The simplest rule for Git is:

rule git
set $command ~ "^git-(receive|upload)-pack"
set [0] =~ "s|^|/usr/bin/|"

The set action is necessary to ensure the proper location of Git binaries to
use. This example supposes they are placed in /usr/bin, you will have to
tailor it if they are located elsewhere on your system.

Chapter 6: Usage Tips 45

To limit Git accesses to repositories under /gitroot directory, modify
the ‘$1’, as shown in the example below:

rule git
match $command ~ "^git-(receive|upload)-pack"
set [1] =~ "^/gitroot[^]+\.git$"
set [0] =~ "s|^|/usr/bin/|"

To provide more helpful error messages, you may follow this rule by a
trap rule (see Section 4.4.10 [Exit], page 32):

Trap the rest of Git requests:
rule git-trap
match $command ~ "^git-.+"
exit "fatal: access to this repository is denied."

6.7 Notification
In this section we will show how to set up a mail notification for Rush rules.
Let’s suppose we wish to receive emails for each upload by scp-to rule (see
Section 6.1 [scp], page 41). To do so, we add the following fall through rule
to the beginning of rush.rc:

rule default
post-socket "inet://localhost"
fall-trough

This will enable notifications for each rule located below this one. Miss-
ing port in post-socket statement means rush will be using the default
‘tcpmux’ port.

To receive and process these requests, you will need an inetd capa-
ble to handle TCPMUX. We recommend the one from GNU Inetutils
package (GNU Inetutils (http://www.gnu.org/software/inetutils)). In
/etc/inetd.conf file, we add:

Enable TCPMUX handling.
tcpmux stream tcp nowait root internal
Handle ‘scp-to’ service.
tcpmux/+scp-to stream tcp nowait root \

/usr/sbin/tcpd /bin/rushmail

The program /bin/rushmail does the actual notification. Following is
its simplest implementation:

http://www.gnu.org/software/inetutils

46 GNU Rush – a restricted user shell

#! /bin/sh

read user command

/usr/sbin/sendmail -oi -t <<EOT
From: GNU Rush Notification <devnull@localhost>
To: <root@localhost>
Subject: GNU Rush notification

Be informed that $user executed $command.
EOT

47

7 Test Mode

GNU Rush provides a special test mode, intended to test configuration files
and to emulate execution of commands. Test mode is enabled by the --test
command line option (aliases: --lint, -t). When rush is given this option,
the following occurs:
1. All diagnostic messages are redirected to standard error, instead of sys-

log.
2. If a single non-option argument is present, it is taken as a name of the

configuration file to use.
3. The configuration file is parsed. If parsing fails, the program exits with

the code 1.
4. If the -c option is present, rush processes its argument as usual (see

Chapter 2 [Operation], page 3), except that the command itself is not
executed.

5. Otherwise, if -i option is present, rush emulates interactive usage, but
does not execute the final command.

An exit status of 0 means no errors, 1 means an error has occurred.
You can also emulate access by a particular user, by supplying his user

name via the --user (-u) option. This option implies --test.
In test mode, you can set debugging level (see Section 4.3.2 [Debugging],

page 11) from the command line, using the --debug (-d) command line
option. It expects a single number specifying debugging level as its argument.
The debugging level set this way overrides settings from the configuration
file.

Here are several examples that illustrate the use of test mode in various
cases:
1. Test default configuration file:

$ rush --test
2. Test configuration file sample.rc:

$ rush --test sample.rc
3. Test interactive access

$ rush --test -i sample.rc
4. Test the configuration file and emulate execution of the command cvs

server. Use debugging level 2:
$ rush --test --debug=2 -c "cvs server"

5. Same, but for user ‘jeff’:
$ rush --user=jeff --debug=2 -c "cvs server"

Note, that you don’t need to specify --test along with --user or -i
options.

6. Same, but use sample.rc instead of the default configuration file:
$ rush --test --debug=2 -c "cvs server" sample.rc

48 GNU Rush – a restricted user shell

7.1 Dump Mode
Dump mode is similar to test mode. The main difference is that in this
mode, rush dumps to the standard output a description of the user request
after performing all checks and transformations.

The mode is requested by the --dump=attr (-D attr) option. The argu-
ment attr is a comma-separated list of the names of attributes to be included
in the dump, or the word ‘all’, standing for all attributes.

Additional options and arguments are the same as for the --test option.
The description is formatted as a JSON object1 with the following at-

tributes. These are also the allowed values for the attr list:

cmdline Command line after transformations.

argv Array of command line arguments after transformations.

prog Name of the program to be executed. If ‘null’, argv[0] will be
used.

interactive ‘0’ for normal requests, ‘1’ for interactive requests.

pw name Name of the user from the system user database.

pw uid UID of the user.

pw gid GID of the user.

pw dir Home directory of the user, as set in the system user database.

umask Value of the umask (octal).

chroot dir Chroot directory.

home dir Current working directory.

gid New GID as set by the newgrp action, or ‘-1’ if unchanged.

fork Fork mode. It is a three-state attribute: ‘0’ meaning disabled,
‘1’ meaning enabled, and ‘-1’ meaning default state.

acct Accounting mode. See ‘fork’, for a description of possible val-
ues.

text domain
Textual domain for i18n.

localedir Locale directory for i18n.

locale Locale name

environ Dump of the environment (array of assignments).

vars Defined variables, as a JSON object.
The attribute ‘all’ stands for all attribute in the same order as listed in

the table above.
1 Well, almost. It diverges from the JSON standard in that slash characters are not

escaped in string objects.

49

8 Option Summary

This chapter provides a short summary of rush command line options.

-c command
Specify the command to run.

-C test
--security-check=test

Configure security checks for the main configuration file. See
Section 4.3.6 [include-security], page 13, for the description of
test argument. See [security checks], page 7, for the discussion
of the available security tests.

-d number
--debug=number

Set debugging level.

--dump=attrs
-D attrs Run in request dump mode. Argument is a comma-separated

list of attribute names. See Section 7.1 [dump mode], page 48,
for a detailed description of the request dump mode.

-i Emulate interactive access. See Chapter 7 [Test Mode], page 47.

--show-default
Display the default built-in configuration. See Chapter 5 [De-
fault Configuration], page 39, for more information.

-t
--test
--lint Run in test mode. An optional argument may be used with this

option to specify alternative configuration file name, e.g.:
$ rush --lint ./test.rc

If the -c option is also specified, rush emulates the normal pro-
cessing for the command, but does not execute it.

-x

--trace Print parser traces. When used twice, print lexical scanner
traces as well. This option is intended for debugging.

-T Test scanner mode. This option is used by the rush testsuite.

-u name
--user=name

Emulate access by user name. This option implies --test and
is valid only when used by root and in conjunction with the -c
option.

-v
--version

Display program version.

50 GNU Rush – a restricted user shell

-h
--help Display a short help message.

--usage Display a concise usage summary.

51

9 The rushwho utility.

The rushwho utility displays a list of users who are currently using rush.
The utility operates on default Rush database, which is maintained if rush
runs in accounting mode (see Section 4.4.8 [Accounting and Forked Mode],
page 30). The following is a sample output from rushwho:

Login Rule Start Time PID Command
jeff sftp Sun 12:17 00:58:26 10673 bin/sftp-server

The information displayed is:

Login The login name of the user.

Rule The tag of the rule he is served under (see Section 4.4 [Rule],
page 14).

Start Time when the rule began execution.

Time Duration of the session.

PID PID of the running command.

Command Command line being executed.

This format is a built-in default. It may be changed either by setting the
RUSHWHO_FORMAT environment variable to the desired format string, or by
using --format command line option.

9.1 Rushwho Options
This section summarizes the command line options understood by rushwho
utility.

-F string
--format=string

Use string instead of the default format, described in Chapter 9
[Rushwho], page 51. See Section 9.2 [Formats], page 52, for
a detailed description of the output format syntax. If string
begins with a ‘@’, then this character is removed from it, and
the resulting string is treated as the name of the file to read.
The contents of this file is the format string. The file is read
literally, except that lines beginning with ‘;’ are ignored (they
can be used to introduce comments). For example, rushwho
--format=@formfile reads in the contents of the file named
formfile.

-f dir
--file=dir

Use database directory dir, instead of the default. By default,
database files are located in /usr/local/var/rush.

52 GNU Rush – a restricted user shell

-H
--no-header

Do not display header line.

-v
--version

Display program version.

-h
--help Display a short help message.

--usage Display a concise usage summary.

9.2 Output Formats
A format string controls the output of every record from GNU Rush ac-
counting database. It may contain following four types of objects:

Ordinary characters
These are copied to the output verbatim.

Escapes An escape is a backslash (‘\\’), followed by a single character.
It is interpreted as follows:
Escape Output
\a Audible bell character (ASCII 7)
\b Backspace character (ASCII 8)
\e Escape character (ASCII 27)
\f Form-feed character (ASCII 12)
\n Newline character (ASCII 10)
\r Carriage return character (ASCII

13)
\t Horizontal tabulation character

(ASCII 9)
\v Vertical tabulation character

(ASCII 11)
\\ A single backslash (‘\’)
\" A double-quote.
Any escape not listed in the table above results in its second
character being output.

Quoted strings
Strings are delimited by single or double quotes. Within a string
escape sequences are interpreted as described above.

Format specifications
A format specification is a kind of function, which outputs a
particular piece of information from the database record.

Each format specification starts with an opening brace and ends with
a closing brace. The first word after the brace is the name of the format

Chapter 9: The rushwho utility. 53

specification. Remaining words are positional arguments followed by key-
word arguments. Both are optional. When specified, keyword arguments
must follow positional ones. A keyword argument begins with a colon. For
example:

(time) A single format specification.

(time 10) The same format specification with the output width limited to
10 characters.

(time 10 Duration)
The ‘time’ format specification, with the output width limited
to 10 characters and ‘Duration’ as a header title.

(time 10 "Session Duration" :right :format %H:%M)
The same with two keyword arguments: ‘:right’ and ‘:format’.
The latter takes the string ‘%H:%M’ as its argument. Notice the
use of quoted string to preserve the whitespace.

A full list of format specifications follows.

[Format Spec]newline [count]
Causes the newline character to be output. If the optional count is sup-
plied, that many newlines will be printed

[Format Spec]tab [num]
Advance to the next tab stop in the output stream. If optional num is
present, then skip num tab stops. Each tab stop is eight characters long.

The following specifications output particular fields from the database
record. They all take two positional arguments: width and title.

The first argument, width sets the maximum output length for this spec-
ification. If the number of characters actually output is less than the width,
they will be padded with whitespace either to the left or to the right, de-
pending on the presence of the :right keyword argument. If the number of
characters is greater than width, they will be truncated to fit. If width is
not given, the field is output as is.

The second argument, title, gives the title of this column for the heading
line. By default no title is output.

Every field specification accepts at least two keyword arguments. The
keyword :right may be used to request alignment to the right. This keyword
is ignored if width is not given.

The keyword :empty followed by a string instructs rushwho to output
that string if the resulting value for this specification would otherwise be
empty.

[Format Spec]user width title [:empty repl][:right]
Print the user login name.

54 GNU Rush – a restricted user shell

[Format Spec]time width title [:empty repl] [:right] [:format
date-format]

[Format Spec]start-time width title [:empty repl] [:right]
[:format date-format]

Date and time when the session started.
The :format keyword introduces the strftime format string to be used
when converting the date for printing. The default value is ‘%a %H:%M’.
See Appendix A [Time and Date Formats], page 61, for a detailed de-
scription of strftime format strings.

[Format Spec]stop-time width title [:empty repl] [:right]
[:format date-format]

Time when the command finished. This specifier is meaningful only for
rushlast (see Chapter 10 [Rushlast], page 55). If the command is still
running, the word ‘running’ is output.

[Format Spec]duration width title [:empty repl] [:right]
Total time of the session duration.

[Format Spec]rule width title [:right]
The tag of the rule used to serve the user. See Section 4.4 [Rule], page 14,
for a detailed description of rules and tags.

[Format Spec]command width title [:empty repl] [:right]
Command line being executed.

[Format Spec]pid width title [:right]
PID of the process.

For example, the following is the default format for the rushwho util-
ity. It is written in a form suitable for use in a file supplied with the
--format=@file command line option (see [format option], page 51):

(user 10 Login)" "
(rule 8 Rule)" "
(start-time 0 Start)" "
(duration 9 Time)" "
(pid 10 PID)" "
(command 28 Command)

55

10 The rushlast utility.

The rushlast utility searches back through the GNU Rush database and
displays a list of all user sessions since the database was created. By default,
it displays the following information:

Login Rule Start Stop Time Command
gray rsync Sun 20:43 Sun 20:43 05:57 /usr/bin/rsync /upload
jeff sftp Sun 20:09 running 07:17 /bin/sftp-server

Login The login name of the user.

Rule The tag of the rule he is served under (see Section 4.4 [Rule],
page 14).

Start Time when the rule began execution.

Start Time when the command finished, or the word ‘running’ if it is
still running.

Time Duration of the session.

Command Command line being executed.

This format is a built-in default. It may be changed either by setting the
RUSHLAST_FORMAT environment variable to the desired format string, or by
using --format command line option (see Section 10.1 [Rushlast Options],
page 55).

10.1 Rushlast Options
This section summarizes the command line options understood by rushlast
utility.

-F string
--format=string

Use string instead of the default format, described in Chapter 9
[Rushwho], page 51. See Section 9.2 [Formats], page 52, for a
detailed description of the output format syntax. To read format
from a file, use --format=@filename. The file is read literally,
except that lines beginning with ‘;’ are ignored (they can be
used to introduce comments).

-f dir
--file=dir

Use database directory dir, instead of the default. By default,
database files are located in /usr/local/var/rush.

--forward
Display entries in chronological order, instead of the reverse
chronological one, which is the default.

56 GNU Rush – a restricted user shell

-n number
--count=number
-number Show at most number records. The form -number is provided

for compatibility with the last(1) utility.

-H
--no-header

Do not display header line.

-v
--version

Display program version.

-h
--help Display a short help message.

--usage Display a concise usage summary.

57

11 Accounting Database

Rush accounting database is stored in the directory localstatedir/rush,
where localstatedir stands for the name of the local state directory, defined
at compile time. By default, it is prefix/var, where prefix is the instal-
lation prefix, which defaults to /usr/local. Thus, the default database
directory is /usr/local/var/rush. You can change this default using the
--localstatedir option to configure before compiling the package. The
--prefix option affects it as well.

As of version 2.2, the database consists of two files, called utmp and wtmp.
The wtmp file keeps information about all user sessions, both finished and
still active. The utmp file contains indices to those records in wtmp, which
represent active sessions.

The wtmp grows continuously, while utmp normally grows the first day
or two after enabling accounting mode, and from then on its size remains
without changes. If you set up log file rotation, e.g. by using logrotate (see
Section “logrotate” in logrotate man page), or a similar tool, it is safe to ro-
tate wtmp without notifying rush. The only requirement is to truncate utmp
to zero size after rotating wtmp, as shown in the following logrotate.conf
snippet:

/var/run/rush/wtmp {
monthly
create 0640 root svusers
postrotate
cat /dev/null > /var/run/rush/utmp

endscript
}

Accounting files are owned by ‘root’ and normally are accessible only to
the owner (file mode ‘600’). You may change the default permissions using
the following global configuration file statements:

[global]acct-umask mask
Set umask used when accessing accounting database files. Default value
is ‘022’.

[global]acct-dir-mode mode
Set mode bits for the accounting directory. The mode argument is the
mode in octal.

[global]acct-file-mode mode
Set mode bits for wtmp and utmp files.

Notice, that these statements affect file and directory modes only when
the corresponding file or directory is created. Rush will not change modes
of the existing files.

58 GNU Rush – a restricted user shell

The following sections contain a detailed description of the structure of
these two files. You may skip them, if you are not interested in technical
details.

11.1 The wtmp file
The wtmp file consists of variable-size entries. It is designed so that it can
easily be read in both directions.

Each record begins with a fixed-size header, which is followed by three
zero-terminated strings, and the record size in size_t representation. The
three strings are, in that order: the user login name, the rule tag, and the
full command line.

The header has the following structure:
struct rush_wtmp {

size_t reclen;
pid_t pid;
struct timeval start;
struct timeval stop;
char *unused[3];

};
where:

reclen is the length of the entire record, including the size of this header.
This field is duplicated at the end of the record.

pid is the PID of the command executed for the user.

start represents the time of the beginning of the user session.

stop represents the time when the user session finished. If the session
is still running, this field is filled with zeros.

unused The three pointers at the end of the structure are used internally
by rush. On disk, these fields are always filled with zeros.

11.2 The utmp file
The utmp file consists of a fixed-size records of the following structure:

struct rush_utmp {
int status;
off_t offset;

};
The fields have the following meaning:

status Status of the record: ‘0’ if the record is unused, and ‘1’ if it
represents an active session.

offset Offset of the corresponding record in wtmp (see previous section).

59

12 How to Report a Bug

Email bug reports to bug-rush@gnu.org. Please include a detailed descrip-
tion of the bug and information about the conditions under which it occurs,
so we can reproduce it. To facilitate the task, the following list shows the
basic set of information that is needed in order to find the bug:
• Package version you use.
• A detailed description of the bug.
• Conditions under which the bug appears.
• It is often helpful to send the contents of config.log file along with

your bug report. This file is created after running ./configure in the
GNU Rush source root directory.

mailto:bug-rush@gnu.org

61

Appendix A Time and Date Formats

This appendix documents the time format specifications understood by the
:format keyword in time output format specifiers (see Section 9.2 [Formats],
page 52). Essentially, it is a reproduction of the man page for GNU strftime
function.

Ordinary characters placed in the format string are reproduced without
conversion. Conversion specifiers are introduced by a ‘%’ character, and are
replaced as follows:
%a The abbreviated weekday name according to the

current locale.

%A The full weekday name according to the current
locale.

%b The abbreviated month name according to the cur-
rent locale.

%B The full month name according to the current lo-
cale.

%c The preferred date and time representation for the
current locale.

%C The century number (year/100) as a 2-digit integer.

%d The day of the month as a decimal number (range
01 to 31).

%D Equivalent to ‘%m/%d/%y’.

%e Like ‘%d’, the day of the month as a decimal num-
ber, but a leading zero is replaced by a space.

%E Modifier: use alternative format, see below (see
[conversion specs], page 63).

%F Equivalent to ‘%Y-%m-%d’ (the ISO 8601 date for-
mat).

%G The ISO 8601 year with century as a decimal num-
ber. The 4-digit year corresponding to the ISO
week number (see ‘%V’). This has the same format
and value as ‘%y’, except that if the ISO week num-
ber belongs to the previous or next year, that year
is used instead.

62 GNU Rush – a restricted user shell

%g Like ‘%G’, but without century, i.e., with a 2-digit
year (00-99).

%h Equivalent to ‘%b’.

%H The hour as a decimal number using a 24-hour
clock (range 00 to 23).

%I The hour as a decimal number using a 12-hour
clock (range 01 to 12).

%j The day of the year as a decimal number (range
001 to 366).

%k The hour (24-hour clock) as a decimal number
(range 0 to 23); single digits are preceded by a
blank. (See also ‘%H’.)

%l The hour (12-hour clock) as a decimal number
(range 1 to 12); single digits are preceded by a
blank. (See also ‘%I’.)

%m The month as a decimal number (range 01 to 12).

%M The minute as a decimal number (range 00 to 59).

%n A newline character.

%O Modifier: use alternative format, see below (see
[conversion specs], page 63).

%p Either ‘AM’ or ‘PM’ according to the given time
value, or the corresponding strings for the current
locale. Noon is treated as ‘pm’ and midnight as ‘am’.

%P Like ‘%p’ but in lowercase: ‘am’ or ‘pm’ or a corre-
sponding string for the current locale.

%r The time in ‘a.m.’ or ‘p.m.’ notation. In the
POSIX locale this is equivalent to ‘%I:%M:%S %p’.

%R The time in 24-hour notation (‘%H:%M’). For a ver-
sion including the seconds, see ‘%T’ below.

%s The number of seconds since the Epoch, i.e., since
1970-01-01 00:00:00 UTC.

Appendix A: Time and Date Formats 63

%S The second as a decimal number (range 00 to 61).

%t A tab character.

%T The time in 24-hour notation (‘%H:%M:%S’).

%u The day of the week as a decimal, range 1 to 7,
Monday being 1. See also ‘%w’.

%U The week number of the current year as a decimal
number, range 00 to 53, starting with the first Sun-
day as the first day of week 01. See also ‘%V’ and
‘%W’.

%V The ISO 8601:1988 week number of the current
year as a decimal number, range 01 to 53, where
week 1 is the first week that has at least 4 days in
the current year, and with Monday as the first day
of the week. See also ‘%U’ and ‘%W’.

%w The day of the week as a decimal, range 0 to 6,
Sunday being 0. See also ‘%u’.

%W The week number of the current year as a deci-
mal number, range 00 to 53, starting with the first
Monday as the first day of week 01.

%x The preferred date representation for the current
locale without the time.

%X The preferred time representation for the current
locale without the date.

%y The year as a decimal number without a century
(range 00 to 99).

%Y The year as a decimal number including the cen-
tury.

%z The time-zone as hour offset from GMT. Required
to emit RFC822-conformant dates (using ‘%a, %d
%b %Y %H:%M:%S %z’)

%Z The time zone or name or abbreviation.

%+ The date and time in date(1) format.

%% A literal ‘%’ character.

64 GNU Rush – a restricted user shell

Some conversion specifiers can be modified by preceding them by the
‘E’ or ‘O’ modifier to indicate that an alternative format should be used.
If the alternative format or specification does not exist for the current lo-
cale, the behaviour will be as if the unmodified conversion specification were
used. The Single Unix Specification mentions ‘%Ec’, ‘%EC’, ‘%Ex’, ‘%EX’, ‘%Ry’,
‘%EY’, ‘%Od’, ‘%Oe’, ‘%OH’, ‘%OI’, ‘%Om’, ‘%OM’, ‘%OS’, ‘%Ou’, ‘%OU’, ‘%OV’, ‘%Ow’,
‘%OW’, ‘%Oy’, where the effect of the ‘O’ modifier is to use alternative nu-
meric symbols (say, roman numerals), and that of the ‘E’ modifier is to use
a locale-dependent alternative representation.

65

Appendix B GNU Free Documentation
License

Version 1.3, 3 November 2008
Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Founda-
tion, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other
functional and useful document free in the sense of freedom: to assure
everyone the effective freedom to copy and redistribute it, with or with-
out modifying it, either commercially or noncommercially. Secondarily,
this License preserves for the author and publisher a way to get credit
for their work, while not being considered responsible for modifications
made by others.
This License is a kind of “copyleft”, which means that derivative works
of the document must themselves be free in the same sense. It com-
plements the GNU General Public License, which is a copyleft license
designed for free software.
We have designed this License in order to use it for manuals for free soft-
ware, because free software needs free documentation: a free program
should come with manuals providing the same freedoms that the soft-
ware does. But this License is not limited to software manuals; it can
be used for any textual work, regardless of subject matter or whether it
is published as a printed book. We recommend this License principally
for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium,
that contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that work
under the conditions stated herein. The “Document”, below, refers to
any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or
distribute the work in a way requiring permission under copyright law.
A “Modified Version” of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with modifica-
tions and/or translated into another language.
A “Secondary Section” is a named appendix or a front-matter section
of the Document that deals exclusively with the relationship of the pub-
lishers or authors of the Document to the Document’s overall subject (or

http://fsf.org/

66 GNU Rush – a restricted user shell

to related matters) and contains nothing that could fall directly within
that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.)
The relationship could be a matter of historical connection with the
subject or with related matters, or of legal, commercial, philosophical,
ethical or political position regarding them.
The “Invariant Sections” are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice that
says that the Document is released under this License. If a section
does not fit the above definition of Secondary then it is not allowed to
be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then
there are none.
The “Cover Texts” are certain short passages of text that are listed, as
Front-Cover Texts or Back-Cover Texts, in the notice that says that the
Document is released under this License. A Front-Cover Text may be
at most 5 words, and a Back-Cover Text may be at most 25 words.
A “Transparent” copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the general
public, that is suitable for revising the document straightforwardly with
generic text editors or (for images composed of pixels) generic paint pro-
grams or (for drawings) some widely available drawing editor, and that
is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made
in an otherwise Transparent file format whose markup, or absence of
markup, has been arranged to thwart or discourage subsequent modi-
fication by readers is not Transparent. An image format is not Trans-
parent if used for any substantial amount of text. A copy that is not
“Transparent” is called “Opaque”.
Examples of suitable formats for Transparent copies include plain ascii
without markup, Texinfo input format, LaTEX input format, SGML or
XML using a publicly available DTD, and standard-conforming simple
HTML, PostScript or PDF designed for human modification. Examples
of transparent image formats include PNG, XCF and JPG. Opaque
formats include proprietary formats that can be read and edited only by
proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated
HTML, PostScript or PDF produced by some word processors for output
purposes only.
The “Title Page” means, for a printed book, the title page itself, plus
such following pages as are needed to hold, legibly, the material this
License requires to appear in the title page. For works in formats which
do not have any title page as such, “Title Page” means the text near the
most prominent appearance of the work’s title, preceding the beginning
of the body of the text.

Appendix B: GNU Free Documentation License 67

The “publisher” means any person or entity that distributes copies of
the Document to the public.

A section “Entitled XYZ” means a named subunit of the Document
whose title either is precisely XYZ or contains XYZ in parentheses fol-
lowing text that translates XYZ in another language. (Here XYZ stands
for a specific section name mentioned below, such as “Acknowledge-
ments”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that
it remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice
which states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this License,
but only as regards disclaiming warranties: any other implication that
these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either com-
mercially or noncommercially, provided that this License, the copyright
notices, and the license notice saying this License applies to the Docu-
ment are reproduced in all copies, and that you add no other conditions
whatsoever to those of this License. You may not use technical mea-
sures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in ex-
change for copies. If you distribute a large enough number of copies you
must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have
printed covers) of the Document, numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts:
Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as
the publisher of these copies. The front cover must present the full title
with all words of the title equally prominent and visible. You may add
other material on the covers in addition. Copying with changes limited
to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly,
you should put the first ones listed (as many as fit reasonably) on the
actual cover, and continue the rest onto adjacent pages.

68 GNU Rush – a restricted user shell

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque
copy a computer-network location from which the general network-using
public has access to download using public-standard network protocols
a complete Transparent copy of the Document, free of added material.
If you use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at the stated location
until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the
public.
It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give
them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution and
modification of the Modified Version to whoever possesses a copy of it.
In addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct

from that of the Document, and from those of previous versions
(which should, if there were any, be listed in the History section of
the Document). You may use the same title as a previous version
if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or enti-
ties responsible for authorship of the modifications in the Modified
Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five),
unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified
Version, as the publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adja-

cent to the other copyright notices.
F. Include, immediately after the copyright notices, a license notice

giving the public permission to use the Modified Version under the
terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections
and required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

Appendix B: GNU Free Documentation License 69

I. Preserve the section Entitled “History”, Preserve its Title, and add
to it an item stating at least the title, year, new authors, and
publisher of the Modified Version as given on the Title Page. If
there is no section Entitled “History” in the Document, create one
stating the title, year, authors, and publisher of the Document as
given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for
public access to a Transparent copy of the Document, and likewise
the network locations given in the Document for previous versions
it was based on. These may be placed in the “History” section. You
may omit a network location for a work that was published at least
four years before the Document itself, or if the original publisher of
the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”,
Preserve the Title of the section, and preserve in the section all the
substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in
their text and in their titles. Section numbers or the equivalent are
not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may
not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements”
or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices
that qualify as Secondary Sections and contain no material copied from
the Document, you may at your option designate some or all of these
sections as invariant. To do this, add their titles to the list of Invariant
Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.
You may add a section Entitled “Endorsements”, provided it contains
nothing but endorsements of your Modified Version by various parties—
for example, statements of peer review or that the text has been ap-
proved by an organization as the authoritative definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of
Cover Texts in the Modified Version. Only one passage of Front-Cover
Text and one of Back-Cover Text may be added by (or through ar-
rangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrange-
ment made by the same entity you are acting on behalf of, you may not

70 GNU Rush – a restricted user shell

add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.
The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or imply
endorsement of any Modified Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under
this License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the Invari-
ant Sections of all of the original documents, unmodified, and list them
all as Invariant Sections of your combined work in its license notice, and
that you preserve all their Warranty Disclaimers.
The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single copy.
If there are multiple Invariant Sections with the same name but different
contents, make the title of each such section unique by adding at the end
of it, in parentheses, the name of the original author or publisher of that
section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice
of the combined work.
In the combination, you must combine any sections Entitled “History”
in the various original documents, forming one section Entitled “His-
tory”; likewise combine any sections Entitled “Acknowledgements”, and
any sections Entitled “Dedications”. You must delete all sections Enti-
tled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other docu-
ments released under this License, and replace the individual copies of
this License in the various documents with a single copy that is included
in the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.
You may extract a single document from such a collection, and distribute
it individually under this License, provided you insert a copy of this
License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, is called an “aggregate” if the copyright resulting
from the compilation is not used to limit the legal rights of the com-
pilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to
the other works in the aggregate which are not themselves derivative
works of the Document.

Appendix B: GNU Free Documentation License 71

If the Cover Text requirement of section 3 is applicable to these copies
of the Document, then if the Document is less than one half of the entire
aggregate, the Document’s Cover Texts may be placed on covers that
bracket the Document within the aggregate, or the electronic equivalent
of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute
translations of the Document under the terms of section 4. Replacing
Invariant Sections with translations requires special permission from
their copyright holders, but you may include translations of some or all
Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, pro-
vided that you also include the original English version of this License
and the original versions of those notices and disclaimers. In case of
a disagreement between the translation and the original version of this
License or a notice or disclaimer, the original version will prevail.
If a section in the Document is Entitled “Acknowledgements”, “Dedi-
cations”, or “History”, the requirement (section 4) to Preserve its Title
(section 1) will typically require changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document ex-
cept as expressly provided under this License. Any attempt otherwise to
copy, modify, sublicense, or distribute it is void, and will automatically
terminate your rights under this License.
However, if you cease all violation of this License, then your license from
a particular copyright holder is reinstated (a) provisionally, unless and
until the copyright holder explicitly and finally terminates your license,
and (b) permanently, if the copyright holder fails to notify you of the
violation by some reasonable means prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is reinstated
permanently if the copyright holder notifies you of the violation by some
reasonable means, this is the first time you have received notice of vi-
olation of this License (for any work) from that copyright holder, and
you cure the violation prior to 30 days after your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, receipt of a copy of some or all of the same material does
not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions
of the GNU Free Documentation License from time to time. Such

72 GNU Rush – a restricted user shell

new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License “or any later version” applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation. If the Document specifies
that a proxy can decide which future versions of this License can be used,
that proxy’s public statement of acceptance of a version permanently
authorizes you to choose that version for the Document.

11. RELICENSING
“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any
World Wide Web server that publishes copyrightable works and also
provides prominent facilities for anybody to edit those works. A public
wiki that anybody can edit is an example of such a server. A “Massive
Multiauthor Collaboration” (or “MMC”) contained in the site means
any set of copyrightable works thus published on the MMC site.
“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0
license published by Creative Commons Corporation, a not-for-profit
corporation with a principal place of business in San Francisco, Califor-
nia, as well as future copyleft versions of that license published by that
same organization.
“Incorporate” means to publish or republish a Document, in whole or
in part, as part of another Document.
An MMC is “eligible for relicensing” if it is licensed under this License,
and if all works that were first published under this License somewhere
other than this MMC, and subsequently incorporated in whole or in
part into the MMC, (1) had no cover texts or invariant sections, and
(2) were thus incorporated prior to November 1, 2008.
The operator of an MMC Site may republish an MMC contained in the
site under CC-BY-SA on the same site at any time before August 1,
2009, provided the MMC is eligible for relicensing.

http://www.gnu.org/copyleft/

Appendix B: GNU Free Documentation License 73

ADDENDUM: How to use this License for your
documents
To use this License in a document you have written, include a copy of the
License in the document and put the following copyright and license notices
just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
replace the “with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other com-
bination of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we rec-
ommend releasing these examples in parallel under your choice of free soft-
ware license, such as the GNU General Public License, to permit their use
in free software.

75

Concept Index

This is a general index of all issues discussed in this manual.

$
$# . 16

–
--count, rushlast . 55
--debug . 47
--debug, rush . 49
--dump . 48, 49
--file, rushlast . 55
--file, rushwho . 51
--format, rushlast . 55
--format, rushwho . 51
--forward, rushlast 55
--help, rush . 49
--help, rushlast . 56
--help, rushwho . 52
--lint . 47
--lint, rush . 49
--no-header, rushlast 56
--no-header, rushwho 51
--security-check, rush 49
--show-default . 39
--show-default, rush 49
--test . 47
--test, rush . 49
--trace, rush . 49
--usage, rush . 50
--usage, rushlast . 56
--usage, rushwho . 52
--user . 47
--user, rush . 49
--version, rush . 49
--version, rushlast 56
--version, rushwho 52
-b, file system test . 19
-c . 47
-c, file system test . 19
-c, rush . 49
-C, rush . 49
-d . 47
-d, file system test . 20
-d, rush . 49
-D . 48, 49
-e, file system test . 20
-f, file system test . 20
-f, rushlast . 55

-f, rushwho . 51
-F, rushlast . 55
-F, rushwho . 51
-g, file system test . 20
-G, file system test . 20
-h, file system test . 20
-h, rush . 49
-h, rushlast . 56
-h, rushwho . 52
-H, rushlast . 56
-H, rushwho . 51
-i, rush . 49
-k, file system test . 20
-L, file system test . 20
-n, rushlast . 55
-O, file system test . 20
-p, file system test . 20
-r, file system test . 20
-s, file system test . 20
-S, file system test . 20
-t, rush . 49
-T, rush . 49
-u . 47
-u, file system test . 20
-u, rush . 49
-v, rush . 49
-v, rushlast . 56
-v, rushwho . 52
-w, file system test . 20
-x, file system test . 20
-x, rush . 49

A
accounting . 30
accounting database 57
acct . 30
acct, dump attribute 48
acct-dir-mode . 14, 57
acct-file-mode 14, 57
acct-umask . 14, 57
actions . 3
actions, system . 27
all, dump attribute 48
all, include security flag 13
argv, dump attribute 48

76 GNU Rush – a restricted user shell

B
backreference interpretation 8
backslash interpretation 8
basic regular expressions 12

C
chdir . 28
checking file ownership 19
checking file type . 19
chroot . 28
chroot_dir, dump attribute 48
clrenv . 25
cmdline, dump attribute 48
command . 16, 54
comparison . 18
conditions . 3, 18
config-error . 12
configuration file syntax 10
configuration file, testing 47
cvs . 44

D
debug . 11
debugging . 11
debugging levels . 11
delete . 24
dir_iwgrp, include security flag 13
dir_iwoth, include security flag 13
domain, localization 34
dump mode . 48
duration . 54

E
environ, dump attribute 48
Environment . 25
error messages . 12
evalenv . 26
exit . 32
exit rule . 32
expand-undefined . 11
expansion of undefined variables 17
extended regular expressions 12

F
fall-through . 29
fall-through rule . 3
fall-through statement 29
fallthrough . 29
file ownership, checking 19
file type, checking . 19
fork . 31
fork, dump attribute 48
forked mode . 30

G
g, transform flag . 22
gecos . 16
gid . 16
gid, dump attribute 48
git . 44
git-receive-pack . 44
git-shell . 44
git-upload-pack . 44
global . 11
group . 16, 19
groupwritabledir, include

security flag . 13
groupwritablefile, include

security flag . 13

H
home . 16
home_dir, dump attribute 48

I
i, transform flag . 22
i18n . 33
identifiers, configuration 8
‘in’, operator . 19
include . 36
include-security . 13
indexing, words in command line 15
insert . 23
interactive . 33
interactive access . 33
interactive, dump attribute 48
internationalization . 33
iwgrp, include security flag 13
iwoth, include security flag 13

Concept Index 77

K
keepenv . 26

L
l10n . 33
legacy syntax . 7
limiting number of

simultaneous sessions 29
limits . 28
link, include security flag 13
locale . 35
locale directory . 34
locale name . 33
locale, dump attribute 48
locale-dir . 35
localedir, dump attribute 48
localization . 33
localization directives 35

M
map . 24
match . 18
matching conditions 18
message . 12
msgfmt . 36

N
newgroup . 28
newgrp . 28
newline . 53
nologin-error . 12

O
options, command line 49
output formats . 52
owner, include security flag 13

P
pid . 54
post-socket . 31
prog, dump attribute 48
program . 16
pw_dir, dump attribute 48
pw_gid, dump attribute 48
pw_name, dump attribute 48
pw_uid, dump attribute 48

Q
quoted strings . 8

R
regexp . 13
regular expressions . 12
remopt . 24
request . 3, 15
rsync . 42
rule . 3, 14, 54
rule tag . 14
rule, fall-through . 3
rush, statement . 10
rush-po . 35
rush.rc . 7
rushlast . 55
RUSHLAST_FORMAT . 55
rushwho . 51
rushwho, command line options 51
RUSHWHO_FORMAT . 51

S
s-expression . 22
scp . 41
set . 21, 22
setenv . 26
sftp . 43
simultaneous sessions 29
sleep-time . 12
start-time . 54
stop-time . 54
svn . 44
syntax version statement 10
syntax, configuration files 10
syntax, legacy . 7
system actions . 27
system-error . 12

78 GNU Rush – a restricted user shell

T
tab . 53
tag, rule . 14
tcpmux . 31
test mode . 47
testing configuration file 47
text-domain . 35
text_domain, dump attribute 48
textual domain . 34
tilde expansion . 28, 36
time . 54
time formats, for
--time-format option 61

trap rule . 32

U
uid . 16
umask . 28
umask, dump attribute 48
undefined variable, expansion 17
unquoted strings . 8
unset . 23

unsetenv . 26
usage-error . 12
user . 16, 53
utmp . 58
utmp file, accounting database 57

V
vars, dump attribute 48

W
word splitting . 15
worldwritabledir, include

security flag . 13
worlwritablefile, include

security flag . 13
wtmp . 58
wtmp file, accounting database 57

X
x, transform flag . 22

	Introduction
	Operation
	Quick Start
	Configuration File
	Lexical Structure of the Configuration File
	Syntax
	The global statement
	Expansion control
	Debugging
	The sleep-time statement
	Error Messages
	The regexp statement
	The include-security statement
	Accounting control statements

	Rule
	The Request
	Positional variables
	Request variables
	Environment variables
	User-defined variables
	Variable Expansion

	Matching Conditions
	Comparisons
	Membership operators
	File system tests
	Boolean expressions

	Modifying variables
	The set statement
	The insert statement
	The unset statement
	The remopt statement
	The delete statement
	The map statement

	Environment
	Transformations
	System Actions
	Fall-through
	Accounting and Forked Mode
	Post-process Notification
	Exit rule
	Interactive Access
	Localization
	Localization Directives
	Writing Your Localization

	Include

	Default Configuration
	Usage Tips
	scp
	rsync
	sftp
	cvs
	svn
	git
	Notification

	Test Mode
	Dump Mode

	Option Summary
	The rushwho utility.
	Rushwho Options
	Output Formats

	The rushlast utility.
	Rushlast Options

	Accounting Database
	The wtmp file
	The utmp file

	How to Report a Bug
	Time and Date Formats
	GNU Free Documentation License
	Concept Index

